
Audio Toolbox™ Release Notes

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Audio Toolbox™ Release Notes
© COPYRIGHT 2016 - 2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

R2021a

OpenL3 Pretrained Network: Extract deep audio embeddings with
pretrained OpenL3 convolutional neural network 1-2

CREPE: Deep learning pitch estimation . 1-2

ivectorSystem: Produce compact representations of audio signals 1-2

vggishPreprocess and yamnetPreprocess . 1-2

Enhanced audio workflow within Signal Labeler . 1-3

acousticRoughness: Measure perceived roughness of an acoustic signal
. 1-3

Octave Filter Bank Block: Octave and fractional-octave filter bank 1-3

Sidechain input capability for dynamic range objects and blocks 1-3

GPU code acceleration for audioFeatureExtractor object 1-3

New rectification option for cepstralCoefficients . 1-3

Extended JUCE project support . 1-4

Set nondefault time stretching and pitch shifting parameters using
audioDataAugmenter . 1-4

Additional examples for deep learning and psychoacoustics 1-4

R2020b

YAMNet Pretrained Network: Classify sounds with pretrained YAMNet
neural network . 2-2

VGGish Pretrained Network: Extract audio embeddings with pretrained
VGGish neural network . 2-2

Extract cepstral coefficients from spectrograms and auditory
spectrograms . 2-2

iii

Contents

Compute delta of audio features . 2-2

Enhanced control of designAuditoryFilterBank . 2-3

Enhanced control of audioFeatureExtractor and Extract Audio Features
. 2-3

Enhanced control of melSpectrogram . 2-3

Enhanced control of time-domain windowing for mfcc and gtcc 2-4

Extract spectral flux from streaming signals . 2-4

Generate MATLAB function from audioFeatureExtractor 2-4

GPU code acceleration for new and existing features 2-4

GPU code generation support for the melSpectrogram function 2-5

Measure perceived acoustic fluctuation strength . 2-5

Enhanced control over sound pressure level (SPL) metering 2-5

Improved low-frequency and high-frequency octave filtering using
octaveFilter . 2-5

Improved low-frequency octave filtering using octaveFilterBank 2-5

Enhanced Audio Test Bench workflow . 2-5

Report audio plugin latency to host . 2-5

Refresh audio device list from audio I/O blocks . 2-6

Additional examples for deep learning . 2-6

Functionality being removed or changed . 2-6
Specify window for mfcc, gtcc, and melSpectrogram functions 2-6
Delta computation for mfcc, gtcc, and audioFeatureExtractor 2-6
Window normalization parameter renamed for audioFeatureExtractor . . . 2-6
SOS returned instead of FOS from octaveFilterBank 2-7
cepstralFeatureExtractor will be removed . 2-7
designAuditoryFilterBank scaling changed for ERB filter banks 2-7

R2020a

Measure perceived loudness according to ISO 532-1 or ISO 532-2 3-2

Measure perceived sharpness according to DIN 45692 3-2

iv Contents

Determine calibration factor for microphone . 3-2

Convert between acoustic loudness units phon and sone 3-2

Detect boundaries of speech in audio . 3-2

Streamline audio feature extraction in the Live Editor 3-2

GPU code generation support for the mfcc function 3-2

Audio Datastore: Write data from audio datastore using writeall 3-2

GPU code acceleration for mfcc and melSpectrogram functions 3-3

Text-to-speech conversion using third-party speech API 3-3

Cubic root rectification for MFCC and GTCC calculations 3-3

Enhanced look and feel for Audio Test Bench . 3-3

Enhanced visualization for loaded plugins . 3-3

Generate standalone executable from audio plugin 3-3

Generate sine, square, and sawtooth waveforms in Simulink 3-3

Generate periodic signal from single-cycle waveforms in Simulink 3-4

Additional input ports for Audio Toolbox blocks . 3-4

Additional examples for deep learning and machine learning 3-4

R2019b

AU Plugin Generation: Generate AU plugins for macOS 4-2

Custom Plugin UI: Generate VST and AU plugins with custom UIs 4-2

Enhanced Parameter Tuner UI . 4-2

Audio Data Augmentation: Enlarge your dataset using audio-specific
augmentation . 4-2

Audio Feature Extraction: Streamline audio feature extraction 4-2

Pitch shifting: Increase or decrease the pitch of audio signals 4-3

Time stretching: Stretch the time scale of audio signals 4-3

v

Auditory Filter Banks: Design common frequency-domain auditory filter
banks . 4-3

Enhanced MFCC extraction . 4-3

Enhanced GTCC extraction . 4-3

Audio Labeler App: Automatically label regions of speech 4-3

Audio Labeler App: Speech-to-text transcription using third-party speech
API . 4-3

Pink Noise: Generate noise signals common to audio applications 4-4

Tune reverberator parameters graphically . 4-4

Specify coefficient orientation output from designParamEQ,
designShelvingEQ, and designVarSlopeFilter . 4-4

Visualize and analyze the filters designed by weightingFilter and
octaveFilter . 4-4

Additional examples for deep learning, active noise control, positional
audio, and time-frequency masking . 4-4

R2019a

Modified Discrete Cosine Transform (MDCT) . 5-2

Gammatone Filter Bank: Mimic the human auditory system 5-2

Mel-Spaced Spectrogram: Transform signals into perceptually-spaced
compact time-frequency representations . 5-2

Feature Extraction: Gammatone cepstral coefficients (GTCC) 5-2

Feature Extraction: Characterize level of harmonicity in audio signals
. 5-2

Feature Extraction: Characterize spectral shape of audio signals 5-2

Feature Extraction: Enhancements to cepstral feature extractors 5-3

Enhancements to Audio Datastore: Combine datastores and define
custom read functions . 5-3

Convert between Hz, Bark, ERB, and mel domains 5-3

Generate JUCE projects from your audio plugins . 5-3

vi Contents

Octave Filter Bank: Decompose signal into octave or fractional-octave
subbands . 5-4

Graphically tune audio plugins and Audio Toolbox objects while
streaming . 5-4

Enhanced Parametric Equalization in Simulink . 5-4

Improved Swept Sine Generation and Impulse Response Estimation 5-4

New examples for deep learning, active noise control, pitch tracking, and
MIDI . 5-4

R2018b

Audio Labeler App: Interactively define and visualize ground-truth labels
for audio datasets . 6-2

Audio Datastore: Handle large collections of audio recordings for batch
processing or machine and deep learning applications 6-2

Octave Level Metering: Measure sound pressure level for octave and
fractional-octave bands of audio signals . 6-2

HRTF Interpolation: Compute Head-Related Transfer Functions (HRTF)
for arbitrary positions from space-discrete datasets 6-2

Impulse Response Measurements: Estimate impulse responses of
acoustical systems using MATLAB code . 6-2

Audio Test Bench enhancements . 6-2

Additional examples for machine learning, deep learning, and spatial
audio . 6-3

R2018a

Impulse Response Measurer App: Interactively measure impulse and
frequency responses of acoustic systems . 7-2

MIDI Message Interface: Send and receive MIDI messages of any type in
MATLAB . 7-2

Voice Activity Detection: Automate the detection of speech content in
audio signals . 7-2

vii

Feature Extraction: Compute features of audio signals, such as pitch and
MFCC . 7-2

Sound Pressure Level (SPL) Metering: Measure the level of acoustic
signals in decibels relative to a standard perceptual reference 7-3

Improved Audio Test Bench: Persistent I/O Settings and Bypass Mode
. 7-3

Multichannel Support for RaspberryPi and STM Discovery Hardware . . . 7-3

Additional examples for word recognition and dataset recording 7-3

Speech-to-Text Transcription Using 3rd-Party Speech API 7-3

R2017b

AU Plugin Hosting: Run and test Audio Units (AU) plugins in MATLAB on
macOS . 8-2

Graphic Equalization: Boost and cut standard octave or fractional octave
frequency bands in MATLAB and Simulink . 8-2

Real-World Parameter Values for Hosted Plugins: Set and get values of
hosted plugin parameters directly, using standard dot notation 8-2

MATLAB Code Generation from Audio Test Bench: Automatically generate
MATLAB code for real-time audio streaming and processing 8-2

Direct Access to ASIO Configuration Panel: Open configuration panel of
ASIO drivers directly from MATLAB . 8-2

Additional input ports for Audio Toolbox blocks . 8-2

Additional examples for machine learning, spatial audio, device
measurements, and deployment to android . 8-3

R2017a

Enhanced VST Workflow in Audio Test Bench: Interactively tune hosted
VST plugins and test MATLAB objects in VST mode 9-2

Synchronized Playback and Acquisition: Play back and acquire audio
signals synchronously in MATLAB via a single audioPlayerRecorder
object . 9-2

viii Contents

WASAPI Driver Support on Windows: Stream signals from and to audio
devices equipped with WASAPI drivers . 9-2

File browsing in Audio Test Bench . 9-2

Additional fractional bandwidth option for octave filtering 9-2

configureMIDI support for hosted audio plugins . 9-2

Tab completion for parameter names and options 9-2

Additional audio plugin examples . 9-3

R2016b

Audio Plugin Hosting: Run and test VST plugins directly in MATLAB
. 10-2

Improved Audio Test Bench: Choose from a wider range of input signals,
and generate VST plugins directly from the app 10-2

Loudness Metering: Measure standard-compliant loudness parameters
. 10-2

Octave-Band Filters: Select octave and fractional-octave signal bands
using standard-compliant digital filters . 10-2

Audio Weighting Filters: Compensate signal magnitude for perceptual
measurements using standard-compliant A-, C-, and K-weighted filters
. 10-2

Plugin class creation and MIDI support for multiband parametric
equalizer . 10-3

Simpler way to call System objects . 10-3

R2016a

VST plugin generation for digital audio workstations 11-2

Interfaces to ASIO, ALSA, CoreAudio, and Windows Direct Sound 11-2

Interfaces to MIDI controls for real-time tuning of MATLAB and Simulink
simulations . 11-2

ix

Audio processing algorithms, sources, and measurements for MATLAB
and Simulink . 11-2

Audio test bench to automatically generate an interactive audio
simulation environment . 11-2

Support for C code generation . 11-2

Support for MATLAB Compiler . 11-2

x Contents

R2021a

Version: 3.0

New Features

Bug Fixes

1

OpenL3 Pretrained Network: Extract deep audio embeddings with
pretrained OpenL3 convolutional neural network
openl3 produces audio embeddings that can be used as input to deep learning classification
networks or general machine learning systems. The layers of openl3 can also be incorporated as
part of a larger network.

• Use the openl3 function to return the pretrained neural network.
• Use the openl3Preprocess function to preprocess the audio signal and generate the input to the

network.
• Use the openl3Features function to combine preprocessing and network inference to generate

deep audio embeddings.

The openl3 and openl3Features functions require Deep Learning Toolbox™.

CREPE: Deep learning pitch estimation
This release introduces the CREPE convolutional deep learning neural network and associated pre
and postprocessing functions. Depending on the setup, CREPE can be integrated into a larger deep
learning model or used as a feature extractor.

• Use the crepe function to return the pretrained neural network.
• Use the crepePreprocess function to preprocess the audio signal into a format acceptable by

crepe.
• Use the crepePostprocess function to postprocess the output of the CREPE network and

convert it to a pitch estimate.
• Use the pitchnn function to incorporate audio pre and postprocessing with network inference

and produce the pitch estimation.

The crepe and pitchnn functions require Deep Learning Toolbox.

ivectorSystem: Produce compact representations of audio signals
Use ivectorSystem object to produce compact representations of audio signals for applications
such as speaker verification, speaker identification, speaker diarization, speech emotion recognition,
and acoustic machine fault detection.

The ivectorSystem object enables a streamlined workflow including system training, label
enrolling and unenrolling, label verification, label identification, as well as open-set classification
threshold determination.

vggishPreprocess and yamnetPreprocess
This release introduces functions that preprocess audio signals for classification tasks using the
VGGish (vggish) or YAMNet (yamnet) pretrained neural networks. With the vggishPreprocess
and yamnetPreprocess functions, users can process large audio sets through the networks more
efficiently.

R2021a

1-2

Enhanced audio workflow within Signal Labeler
The Signal Labeler app has been enhanced with new audio functionality that enables data importing
from audio files and folders.

acousticRoughness: Measure perceived roughness of an acoustic
signal
Apply the acousticRoughness function for perceptual sound quality analysis or noise vibration
harshness evaluation.

Using algorithms based on the Zwicker loudness method (ISO 532-1), the acousticRoughness
function quantifies perceived amplitude modulations (between approximately 10 Hz and 400 Hz) due
to amplitude or frequency modulations in the audio signal.

The acousticRoughness function returns roughness in asper units and specific roughness in asper/
Bark.

Octave Filter Bank Block: Octave and fractional-octave filter bank
The Octave Filter Bank Simulink® block simplifies the design and visualization of ANSI S1.11-2204
compliant filter banks. The Octave Filter Bank block maintains the properties of the
octaveFilterBank object, with additional enhancements enabling individual frequency band
access, as well as specifying or inheriting sample rate.

Sidechain input capability for dynamic range objects and blocks
The Sidechain input lets you use one audio input signal to provide dynamic range compression or
expansion of a second, separate audio signal. Use the Sidechain input for channel-linked stereo audio
processing, ducking, and de-essing.

The Sidechain input applies to four objects and their associated blocks:

• The compressor object and Compressor block
• The expander object and Expander block
• The limiter object and Limiter block
• The noiseGate object and Noise Gate block

GPU code acceleration for audioFeatureExtractor object
The audioFeatureExtractor object now supports gpuArray objects.

You must have Parallel Computing Toolbox™ to use gpuArray objects with supported functions. See
Run MATLAB Functions on a GPU for more details and GPU Support by Release to see which GPUs
are supported.

New rectification option for cepstralCoefficients
The cepstralCoefficients function now allows users to implement custom rectification outside of
the function.

1-3

https://www.mathworks.com/help/releases/R2020a/parallel-computing/gpuarray.html
https://www.mathworks.com/help/releases/R2020a/parallel-computing/run-matlab-functions-on-a-gpu.html
https://www.mathworks.com/help/releases/R2020a/parallel-computing/gpu-support-by-release.html

• 'log' — Performs logarithmic 'Rectification'.
• 'cubic-root' — Performs cubic-root 'Rectification'.
• 'none' — No 'Rectification' is carried out. This option enables you to implement your own
rectification algorithms outside of the function.

Extended JUCE project support
generateAudioPlugin function can now generate C/C++ source code and JUCE project files
suitable for use with JUCE 5.3.2 to 6.0.1. This functionality requires a MATLAB® Coder™ license.

Set nondefault time stretching and pitch shifting parameters using
audioDataAugmenter
audioDataAugmenter has been enhanced with two new object functions allowing default parameter
value modification of time stretching and pitch shifting augmentation algorithms.

Additional examples for deep learning and psychoacoustics
Design and Use Deep Learning Systems

• “Speaker Recognition Using x-vectors”
• “Speaker Diarization Using x-vectors”
• “Train Spoken Digit Recognition Network Using Out-of-Memory Audio Data”
• “Train Spoken Digit Recognition Network Using Out-of-Memory Features”
• “Speaker Identification Using Custom SincNet Layer and Deep Learning”
• “Dereverberate Speech Using Deep Learning Networks”
• “Speech Command Recognition in Simulink”

Deploy Deep Learning Systems

• “Keyword Spotting in Noise Code Generation with Intel MKL-DNN”
• “Keyword Spotting in Noise Code Generation on Raspberry Pi”

Psychoacoustics

• “Effect of Soundproofing on Perceived Noise Levels”

R2021a

1-4

R2020b

Version: 2.3

New Features

Bug Fixes

Compatibility Considerations

2

YAMNet Pretrained Network: Classify sounds with pretrained YAMNet
neural network
Use the classifySound function to preprocess, perform sound classification using YAMNet, and
then postprocess the network outputs. You can specify smoothing and thresholding parameters for
sound classification, and analyze the output by viewing the most likely sounds for a whole signal, or a
table of detected sounds and the corresponding decision confidence. YAMNet is a pretrained neural
network that predicts 521 audio event classes.

Use the yamnet function to interact with the network object directly. The network is returned as a
SeriesNetwork object. You can use this pretrained model for classification and transfer learning.

Use the yamnetGraph function to explore the audio event class ontology.

The YAMNet functionality requires Deep Learning Toolbox.

VGGish Pretrained Network: Extract audio embeddings with
pretrained VGGish neural network
Use the vggishFeatures function to extract semantically meaningful 128-dimensional feature
vectors (embeddings). You can use the feature vectors as input for a classification model.

Use the vggish function to interact with the network object directly. The network is returned as a
SeriesNetwork object. You can use this pretrained model for feature extraction and transfer
learning.

The VGGish functionality requires Deep Learning Toolbox.

Extract cepstral coefficients from spectrograms and auditory
spectrograms
Use the cepstralCoefficients function to extract cepstral coefficients from spectrograms and
auditory spectrograms. The cepstralCoefficients function supports streaming and nonstreaming
audio signals.

You can now use modular functions such as stft, designAuditoryFilterBank,
cepstralCoefficients, and audioDelta in combination for efficient extraction of audio features
such as mel frequency cepstral coefficients (MFCC), gammatone frequency cepstral coefficients
(GTCC), and Bark frequency cepstral coefficients (BFCC). You can also use these modular functions to
explore, extend, or modify default implementations.

Compute delta of audio features
Use the audioDelta function to compute the delta of any audio feature. The audioDelta function
supports streaming and nonstreaming audio signals.

You can now use modular functions such as stft, designAuditoryFilterBank,
cepstralCoefficients, and audioDelta in combination for efficient extraction of audio features
such as mel frequency cepstral coefficients (MFCC), gammatone frequency cepstral coefficients
(GTCC), and Bark frequency cepstral coefficients (BFCC). You can also use these modular functions to
explore, extend, or modify default implementations.

R2020b

2-2

https://www.mathworks.com/help/releases/R2020b/audio/ref/classifysound.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/yamnet.html
https://www.mathworks.com/help/releases/R2020b/deeplearning/ref/seriesnetwork.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/yamnetgraph.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/vggishfeatures.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/vggish.html
https://www.mathworks.com/help/releases/R2020b/deeplearning/ref/seriesnetwork.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/cepstralcoefficients.html
https://www.mathworks.com/help/releases/R2020b/signal/ref/stft.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/designauditoryfilterbank.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/cepstralcoefficients.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/audiodelta.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/audiodelta.html
https://www.mathworks.com/help/releases/R2020b/signal/ref/stft.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/designauditoryfilterbank.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/cepstralcoefficients.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/audiodelta.html

Enhanced control of designAuditoryFilterBank
The designAuditoryFilterBank function now includes parameters to enable the following
functionality:

Parameter New Functionality
'OneSided' Specify whether the filter bank returned is one-

sided or two-sided. Depending on your processing
pipeline, using a two-sided filter bank may

increase speed.
'FilterBankDesignDomain' Specify whether the filter shapes are designed in

the linear (Hz) or warped (mel or Bark) domain.
This parameter is only applicable when the

frequency scale is mel or Bark.

Enhanced control of audioFeatureExtractor and Extract Audio
Features
The audioFeatureExtractor object and the Extract Audio Features task now include
parameters to enable the following functionality:

audioFeatureExtractor
Parameter

Extract Audio Features UI
label

New Functionality

WindowNormalization Window normalization Specify whether to normalize a
spectrum by the time-domain

window energy. This
functionality applies when using
or extracting a linear, mel, Bark,

or ERB spectrum.
FilterBankDesignDomain Filter bank domain Specify whether the filter

shapes are designed in the
linear (Hz) or warped (mel or

Bark) domain. This functionality
applies when using or extracting

a mel or Bark spectrum.

Enhanced control of melSpectrogram
The melSpectrogram function now includes parameters to enable the following functionality:

Parameter New Functionality
'Window' Specify the desired time-domain window to apply

prior to the discrete Fourier transform (DFT).
'WindowNormalization' Specify whether or not to normalize the spectrum

by the window energy.

2-3

https://www.mathworks.com/help/releases/R2020b/audio/ref/designauditoryfilterbank.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/designauditoryfilterbank.html#mw_e984b397-7fdc-4bfa-bb73-4324654466e1
https://www.mathworks.com/help/releases/R2020b/audio/ref/designauditoryfilterbank.html#mw_b1acd784-54c1-440a-9c34-7fba960adaf8
https://www.mathworks.com/help/releases/R2020b/audio/ref/audiofeatureextractor.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/extractaudiofeatures.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/melspectrogram.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/melspectrogram.html#mw_6d275a77-872b-4a12-9da2-77e2501934e8
https://www.mathworks.com/help/releases/R2020b/audio/ref/melspectrogram.html#mw_e4ac4951-d21e-43ee-87e6-87e522a89939

Parameter New Functionality
'FilterBankNormalization' Specify the type of normalization applied to each

filter in the filter bank. You can choose to ignore
normalization, or normalize by the individual

filter bandwidth or area.

Enhanced control of time-domain windowing for mfcc and gtcc
The mfcc and gtcc functions include a new parameter, Window, that enables you to specify the
window applied in the time domain.

Extract spectral flux from streaming signals
To extract spectral flux from streaming signals, you can now pass state in and out of the
spectralFlux function.

Generate MATLAB function from audioFeatureExtractor
Use generateMATLABFunction to create a MATLAB function from the audioFeatureExtractor
object. The generated MATLAB function performs equivalent audio feature extraction as the object,
and is compatible with C/C++ code generation.

You can also generate a MATLAB function that is optimized for frame-based, streaming audio signals.
When you generate a MATLAB function for stream processing, required states are maintained by the
function.

GPU code acceleration for new and existing features
The following new features support gpuArray objects:

• audioDelta
• cepstralCoefficients

The following existing features now support gpuArray objects:

• stretchAudio
• shiftPitch
• spectralCentroid
• spectralCrest
• spectralDecrease
• spectralEntropy
• spectralFlatness
• spectralFlux
• spectralKurtosis
• spectralRolloffPoint
• spectralSkewness

R2020b

2-4

https://www.mathworks.com/help/releases/R2020b/audio/ref/melspectrogram.html#mw_8dd3648f-49ff-490c-9c02-626d487de71e
https://www.mathworks.com/help/releases/R2020b/audio/ref/mfcc.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/gtcc.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/spectralflux.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/audiofeatureextractor.generatematlabfunction.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/audiofeatureextractor.html
https://www.mathworks.com/help/releases/R2020a/parallel-computing/gpuarray.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/audiodelta.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/cepstralcoefficients.html
https://www.mathworks.com/help/releases/R2020a/parallel-computing/gpuarray.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/stretchaudio.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/shiftpitch.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/spectralcentroid.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/spectralcrest.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/spectraldecrease.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/spectralentropy.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/spectralflatness.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/spectralflux.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/spectralkurtosis.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/spectralrolloffpoint.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/spectralskewness.html

• spectralSlope
• spectralSpread

You must have Parallel Computing Toolbox to use gpuArray objects with supported functions. See
Run MATLAB Functions on a GPU for more details and GPU Support by Release to see which GPUs
are supported.

GPU code generation support for the melSpectrogram function
The melSpectrogram function now supports code generation for graphical processing units (GPUs).
If you have GPU Coder™, you can generate optimized CUDA® code from the melSpectrogram
function for machine learning and deep learning systems.

Measure perceived acoustic fluctuation strength
Use acousticFluctuation to measure perceived fluctuation in accordance with the Zwicker model
of fluctuation and ISO 532-1:2017(E) (the Zwicker loudness method). The acousticFluctuation
function returns fluctuation in vacil and specific fluctuation in vacil/Bark.

Enhanced control over sound pressure level (SPL) metering
You can now use the FrequencyRange property of the splMeter object to specify the frequency
range to analyze.

Improved low-frequency and high-frequency octave filtering using
octaveFilter
The octaveFilter object has been enhanced so that you can specify a larger range of center
frequencies. This enhancement includes more accurate filtering at low and high frequencies.

Improved low-frequency octave filtering using octaveFilterBank
The octaveFilterBank object has been enhanced to provide more accurate filtering at low
frequencies.

Enhanced Audio Test Bench workflow
The Audio Test Bench app has been enhanced to maintain settings applied to scopes between
sessions.

Report audio plugin latency to host
Use the setLatencyInSamples method in your audioPlugin class definition to report latency to
your host application. Typically, digital audio workstations (DAWs) use this information to compensate
for algorithmic latency and align tracks.

2-5

https://www.mathworks.com/help/releases/R2020b/audio/ref/spectralslope.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/spectralspread.html
https://www.mathworks.com/help/releases/R2020a/parallel-computing/run-matlab-functions-on-a-gpu.html
https://www.mathworks.com/help/releases/R2020a/parallel-computing/gpu-support-by-release.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/melspectrogram.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/acousticfluctuation.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/splmeter-system-object.html#mw_9a236dc4-8ad7-4bbd-a6ce-d292720952e1
https://www.mathworks.com/help/releases/R2020b/audio/ref/splmeter-system-object.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/octavefilter-system-object.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/octavefilterbank-system-object.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/audiotestbench-app.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/audioplugin.setlatencyinsamples.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/audioplugin-class.html

Refresh audio device list from audio I/O blocks
The Audio Device Reader block and the Audio Device Writer block now include the ability to refresh a
list of available audio devices. This functionality enables you to add and remove audio devices during
a single MATLAB session.

Additional examples for deep learning
Deploy Deep Learning Systems

• Speech Command Recognition Code Generation on Raspberry Pi
• Speech Command Recognition Code Generation with Intel MKL-DNN

Functionality being removed or changed
Specify window for mfcc, gtcc, and melSpectrogram functions
Behavior change in future release

The WindowLength parameter will be removed from mfcc, gtcc, and melSpectrogram in a future
release. Use the Window parameter instead.

For example, in releases prior to R2020b, you could only specify the length of the time-domain
window. The window was always designed as a periodic Hamming window. You can replace instances
of the following code:

a = mfcc(audioIn,fs,'WindowLength',1024);
b = gtcc(audioIn,fs,'WindowLength',1024);
c = melSpectrogram(audioIn,fs,'WindowLength',1024);

With this code:

a = mfcc(audioIn,fs,'Window',hamming(1024,'periodic'));
b = gtcc(audioIn,fs,'Window',hamming(1024,'periodic'));
c = melSpectrogram(audioIn,fs,'Window',hamming(1024,'periodic'));

Delta computation for mfcc, gtcc, and audioFeatureExtractor
Behavior change

The delta and delta-delta calculations are now computed using the audioDelta function, which has
a different startup behavior than the previous algorithm. The default DeltaWindowLength has
changed from 2 to 9. A delta window length of 2 is no longer supported.

Window normalization parameter renamed for audioFeatureExtractor
Behavior change in future release

The FilterBankNormalization parameter replaces the Normalization parameter when using or
extracting the melSpectrum, barkSpectrum, or erbSpectrum. The Normalization parameter
will be removed in a future release.

For example, replace instances of the following code:

afe = audioFeatureExtractor('melSpectrum',true,'barkSpectrum',true,'erbSpectrum',true);
setExtractorParams(afe,'melSpectrum','Normalization','none')
setExtractorParams(afe,'barkSpectrum','Normalization','none')
setExtractorParams(afe,'erbSpectrum','Normalization','none')

R2020b

2-6

https://www.mathworks.com/help/releases/R2020b/audio/ref/audiodevicereader.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/audiodevicewriter.html
https://www.mathworks.com/help/releases/R2020b/audio/ug/speech-command-recognition-code-generation-with-raspi.html
https://www.mathworks.com/help/releases/R2020b/audio/ug/speech-command-recognition-code-generation-with-intel-mkl-dnn.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/mfcc.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/gtcc.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/melspectrogram.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/audiodelta.html

With this code:

afe = audioFeatureExtractor('melSpectrum',true,'barkSpectrum',true,'erbSpectrum',true);
setExtractorParams(afe,'melSpectrum','FilterBankNormalization','none')
setExtractorParams(afe,'barkSpectrum','FilterBankNormalization','none')
setExtractorParams(afe,'erbSpectrum','FilterBankNormalization','none')

SOS returned instead of FOS from octaveFilterBank
Behavior change

The coeffs function of octaveFilterBank now returns the filter in second-order sections (SOS)
instead of fourth-order sections (FOS). This new format reflects an updated internal representation,
which has been enhanced to remain stable at very low frequencies.

cepstralFeatureExtractor will be removed
Still runs

cepstralFeatureExtractor will be removed. Use the mfcc and gtcc functions to compute the
same features for batch signals. For time-critical processing, use a combination of
designAuditoryFilterBank, cepstralCoefficients, and audioDelta to compute the same
features. If you are extracting multiple audio features, use the audioFeatureExtractor.

designAuditoryFilterBank scaling changed for ERB filter banks
Behavior change

The half-sided ERB filter bank returned from designAuditoryFilterBank is now scaled by 2. This
change provides consistent results when applying one-sided or two-sided filtering, without requiring
multiplications in the processing loop.

2-7

https://www.mathworks.com/help/releases/R2020b/audio/ref/gammatonefilterbank.coeffs.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/octavefilterbank-system-object.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/cepstralfeatureextractor-system-object.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/mfcc.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/gtcc.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/designauditoryfilterbank.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/cepstralcoefficients.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/audiodelta.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/audiofeatureextractor.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/designauditoryfilterbank.html

R2020a

Version: 2.2

New Features

3

Measure perceived loudness according to ISO 532-1 or ISO 532-2
Use acousticLoudness to measure perceived loudness in accordance with ISO 532-1:2017(E) (the
Zwicker method) and ISO 532-2:2017(E) (the Moore-Glasberg method). Both methods can return
loudness in sone and specific loudness. When using the Zwicker method, you can also measure the
percentile loudness of time-varying signals, as described in ISO 532-1:2017(E).

Measure perceived sharpness according to DIN 45692
Use acousticSharpness to measure perceived sharpness of an acoustic signal, as specified by the
ISO 532-1:2017(E) and DIN 45692 standards.

Determine calibration factor for microphone
Use calibrateMicrophone to determine a calibration factor for your audio input system.

Convert between acoustic loudness units phon and sone
Audio Toolbox now includes conversion functions for loudness units phon and sone.

• phon2sone –– Convert from phon to sone
• sone2phon –– Convert from sone to phon

Detect boundaries of speech in audio
Use detectSpeech to determine the start and end indices of regions of speech in audio.

Speech detection is a common preprocessing step for machine learning and deep learning workflows.
See Classify Gender Using LSTM Networks and Keyword Spotting in Noise Using MFCC and LSTM
Networks for examples.

Streamline audio feature extraction in the Live Editor
Use the Extract Audio Features task to configure an optimized feature extraction pipeline by
selecting features and parameters graphically. You can reuse the output from the Extract Audio
Features task to apply feature extraction to entire data sets.

GPU code generation support for the mfcc function
The mfcc function now supports code generation for graphical processing units (GPUs). If you have
GPU Coder, you can generate optimized CUDA code from the mfcc function for machine learning and
deep learning systems.

Audio Datastore: Write data from audio datastore using writeall
You can now write data from an audioDatastore object to files on disk using the writeall
function.

R2020a

3-2

https://www.mathworks.com/help/releases/R2020a/audio/ref/acousticloudness.html
https://www.mathworks.com/help/releases/R2020a/audio/ref/acousticsharpness.html
https://www.mathworks.com/help/releases/R2020a/audio/ref/calibratemicrophone.html
https://www.mathworks.com/help/releases/R2020a/audio/ref/phon2sone.html
https://www.mathworks.com/help/releases/R2020a/audio/ref/sone2phon.html
https://www.mathworks.com/help/releases/R2020a/audio/ref/detectspeech.html
https://www.mathworks.com/help/releases/R2020a/audio/examples/classify-gender-using-long-short-term-memory-networks.html
https://www.mathworks.com/help/releases/R2020a/audio/examples/keyword-spotting-in-noise-using-mfcc-and-lstm-networks.html
https://www.mathworks.com/help/releases/R2020a/audio/examples/keyword-spotting-in-noise-using-mfcc-and-lstm-networks.html
https://www.mathworks.com/help/releases/R2020a/audio/ref/extractaudiofeatures.html
https://www.mathworks.com/help/releases/R2020a/audio/ref/mfcc.html
https://www.mathworks.com/help/releases/R2020a/audio/ref/audiodatastore.html
https://www.mathworks.com/help/releases/R2020a/audio/ref/audiodatastore.writeall.html

GPU code acceleration for mfcc and melSpectrogram functions
The mfcc and melSpectrogram functions now support gpuArray objects. You must have Parallel
Computing Toolbox to use gpuArray objects with supported functions. See Run MATLAB Functions
on a GPU for more details and GPU Support by Release to see which GPUs are supported.

Text-to-speech conversion using third-party speech API
To perform text-to-speech conversion in MATLAB, use the text2speech function available on File
Exchange. The function enables you to interface third-party text-to-speech APIs, including:

• Google® Speech API
• IBM® Watson Speech API
• Microsoft® Azure Speech API

The File Exchange submission includes a tutorial to help get you started.

Cubic root rectification for MFCC and GTCC calculations
You can now choose between cubic-root and log rectification when extracting mel frequency cepstral
coefficients and gammatone cepstral coefficients. This enhancement applies to the mfcc and gtcc
functions, the cepstralFeatureExtractor and audioFeatureExtractor objects, and the
Cepstral Feature Extractor block.

Enhanced look and feel for Audio Test Bench
The Audio Test Bench app has been enhanced with a modern look and feel. The app now supports
custom UI layouts and parameter styles defined in your plugin interface.

Enhanced visualization for loaded plugins
The parameterTuner function now renders parameter-specific widgets for plugins loaded using
loadAudioPlugin.

Generate standalone executable from audio plugin
You can now use the -exe option of the generateAudioPlugin function to generate a binary standalone
executable from an audio plugin. When you evaluate the generated code, the UI you defined in your
audio plugin opens. You can tune parameters and control the input and output of the plugin using the
UI.

Generate sine, square, and sawtooth waveforms in Simulink
Use the Audio Oscillator block in Simulink to generate tunable sine, square, and sawtooth waveforms.
You can tune parameters of the waveforms, such as frequency, amplitude, and DC offset, using input
ports or a UI.

3-3

https://www.mathworks.com/help/releases/R2020a/audio/ref/mfcc.html
https://www.mathworks.com/help/releases/R2020a/audio/ref/melspectrogram.html
https://www.mathworks.com/help/releases/R2020a/parallel-computing/gpuarray.html
https://www.mathworks.com/help/releases/R2020a/parallel-computing/run-matlab-functions-on-a-gpu.html
https://www.mathworks.com/help/releases/R2020a/parallel-computing/run-matlab-functions-on-a-gpu.html
https://www.mathworks.com/help/releases/R2020a/parallel-computing/gpu-support-by-release.html
https://www.mathworks.com/matlabcentral/fileexchange/73326-text2speech
https://www.mathworks.com/matlabcentral/fileexchange/73326-text2speech
https://www.mathworks.com/help/releases/R2020a/audio/ref/mfcc.html
https://www.mathworks.com/help/releases/R2020a/audio/ref/gtcc.html
https://www.mathworks.com/help/releases/R2020a/audio/ref/cepstralfeatureextractor-system-object.html
https://www.mathworks.com/help/releases/R2020a/audio/ref/audiofeatureextractor.html
https://www.mathworks.com/help/releases/R2020a/audio/ref/cepstralfeatureextractor.html
https://www.mathworks.com/help/releases/R2020a/audio/ref/audiotestbench-app.html
https://www.mathworks.com/help/releases/R2020a/audio/ref/parametertuner.html
https://www.mathworks.com/help/releases/R2020a/audio/ref/loadaudioplugin.html
https://www.mathworks.com/help/releases/R2020a/audio/ref/generateaudioplugin.html#bu10gt_-2
https://www.mathworks.com/help/releases/R2020a/audio/ref/generateaudioplugin.html
https://www.mathworks.com/help/releases/R2020a/audio/ref/audiooscillator.html

Generate periodic signal from single-cycle waveforms in Simulink
Use the Wavetable Synthesizer block in Simulink to generate a periodic signal from a single-cycle
waveform you define. You can tune parameters of the signal, such as frequency, amplitude, and DC
offset, using input ports of a UI.

Additional input ports for Audio Toolbox blocks
The table describes the new optional input ports for tuning your block parameters.

Block New Optional Input Ports
Reverberator Pre-delay (s), Highcut frequency (Hz), Diffusion,

Decay factor, High frequency damping, Wet/dry
mix

Voice Activity Detector silence-to-speech probability, speech-to-silence
probability

Crossover Filter Crossover frequency (Hz), Crossover order

Additional examples for deep learning and machine learning
• Train Generative Adversarial Network (GAN) for Sound Synthesis
• Speaker Verification Using Gaussian Mixture Model
• Speaker Verification Using i-Vectors

R2020a

3-4

https://www.mathworks.com/help/releases/R2020a/audio/ref/wavetablesynthesizer.html
https://www.mathworks.com/help/releases/R2020a/audio/ref/reverberator.html
https://www.mathworks.com/help/releases/R2020a/audio/ref/voiceactivitydetector.html
https://www.mathworks.com/help/releases/R2020a/audio/ref/crossoverfilter.html
https://www.mathworks.com/help/releases/R2020a/audio/examples/train-gan-for-sound-synthesis.html
https://www.mathworks.com/help/releases/R2020a/audio/examples/speaker-verification-using-gaussian-mixture-model.html
https://www.mathworks.com/help/releases/R2020a/audio/examples/speaker-verification-using-ivectors.html

R2019b

Version: 2.1

New Features

4

AU Plugin Generation: Generate AU plugins for macOS
You can now generate an Audio Unit (AU) v2 audio plugin binary using generateAudioPlugin.

Custom Plugin UI: Generate VST and AU plugins with custom UIs
Define custom user interfaces (UIs) using the updated audioPluginInterface and
audioPluginParameter functions, and the new audioPluginGridLayout function. The custom
UI is visible once the plugin is generated or when using parameterTuner in MATLAB. Customization
abilities include:

• Define parameter controls that render as knobs, sliders, rocker switches, toggle switches, check
boxes, or drop-downs.

• Position controls and labels on a grid layout.
• Define custom background color, background image, or both.
• Define custom images for controls (generated plugins only).

See Design User Interface for Audio Plugin for more information.

Enhanced Parameter Tuner UI
parameterTuner now renders parameters as knobs, sliders, rocker switches, toggle switches, check
boxes, or drop-downs when used with objects that inherit from audioPlugin. You can also define a
custom background color, background image, or both. Custom images for controls are not supported
by parameterTuner.

Audio Data Augmentation: Enlarge your dataset using audio-specific
augmentation
audioDataAugmenter enables you to enlarge your audio dataset using audio-specific augmentation
techniques like pitch shifting, time-scale modification, time shifting, noise addition, and volume
control. You can create a cascaded augmentation pipeline to apply multiple algorithms
probabilistically, or a parallel augmentation pipeline to apply algorithms deterministically. You can
also add custom augmentation algorithms to audioDataAugmenter.

See Keyword Spotting in Noise Using MFCC and LSTM Networks for an example.

Audio Feature Extraction: Streamline audio feature extraction
Use audioFeatureExtractor to extract multiple audio features using an efficient processing
pipeline. audioFeatureExtractor encapsulates the extraction pipeline so that your code is cleaner
and more modular.

See Sequential Feature Selection for Speech Emotion Recognition and Classify Gender Using LSTM
Networks for examples.

R2019b

4-2

https://www.mathworks.com/help/releases/R2019b/audio/ref/generateaudioplugin.html
https://www.mathworks.com/help/releases/R2019b/audio/ref/audioplugininterface.html
https://www.mathworks.com/help/releases/R2019b/audio/ref/audiopluginparameter.html
https://www.mathworks.com/help/releases/R2019b/audio/ref/audioplugingridlayout.html
https://www.mathworks.com/help/releases/R2019b/audio/ref/parametertuner.html
https://www.mathworks.com/help/releases/R2019b/audio/ug/plugin-gui-design.html
https://www.mathworks.com/help/releases/R2019b/audio/ref/parametertuner.html
https://www.mathworks.com/help/releases/R2019b/audio/ref/audioplugin-class.html
https://www.mathworks.com/help/releases/R2019b/audio/ref/audiodataaugmenter.html
https://www.mathworks.com/help/releases/R2019b/audio/examples/keyword-spotting-in-noise-using-mfcc-and-lstm-networks.html
https://www.mathworks.com/help/releases/R2019b/audio/ref/audiofeatureextractor.html
https://www.mathworks.com/help/releases/R2019b/audio/examples/sequential-feature-selection-for-speech-emotion-recognition.html
https://www.mathworks.com/help/releases/R2019b/audio/examples/classify-gender-using-long-short-term-memory-networks.html
https://www.mathworks.com/help/releases/R2019b/audio/examples/classify-gender-using-long-short-term-memory-networks.html

Pitch shifting: Increase or decrease the pitch of audio signals
Use shiftPitch to increase or decrease the pitch of an audio signal by a given number of
semitones. To achieve better fidelity with the original audio, you can optionally apply phase locking
and formant preservation.

Time stretching: Stretch the time scale of audio signals
Use stretchAudio to apply time-scale modification (TSM) to an audio signal. You can speed up or
slow down audio while preserving the original pitch.

For streaming applications, use audioTimeScaler to apply TSM. The audioTimeScaler enables
you to tune the speedup factor while streaming.

Auditory Filter Banks: Design common frequency-domain auditory
filter banks
Use designAuditoryFilterBank to design a mel, Bark, or ERB filter bank. You can use the filter
bank to apply computationally efficient frequency-domain filtering.

Enhanced MFCC extraction
The mfcc function now accepts frequency-domain input so that you can reuse your DFT computation.

The mfcc function now enables you to specify the bandedges of the filter bank. You can use this
ability to fine-tune the MFCC feature extraction or mimic other implementations.

Enhanced GTCC extraction
The gtcc function now accepts frequency-domain input so that you can reuse your DFT computation.

Audio Labeler App: Automatically label regions of speech
The Audio Labeler app now provides automatic labeling of detected regions of speech.

Audio Labeler App: Speech-to-text transcription using third-party
speech API
The Audio Labeler app now supports the speech2text function available on File Exchange.
Through the Audio Labeler app, you can interface with third-party speech-to-text APIs, including:

• Google Speech API
• IBM Watson Speech API
• Microsoft Azure Speech API

The speech2text entry on File Exchange includes a tutorial includes a tutorial to help get you
started.

4-3

https://www.mathworks.com/help/releases/R2019b/audio/ref/shiftpitch.html
https://www.mathworks.com/help/releases/R2019b/audio/ref/stretchaudio.html
https://www.mathworks.com/help/releases/R2019b/audio/ref/audiotimescaler-system-object.html
https://www.mathworks.com/help/releases/R2019b/audio/ref/audiotimescaler-system-object.html
https://www.mathworks.com/help/releases/R2019b/audio/ref/designauditoryfilterbank.html
https://www.mathworks.com/help/releases/R2019b/audio/ref/mfcc.html
https://www.mathworks.com/help/releases/R2019b/audio/ref/mfcc.html
https://www.mathworks.com/help/releases/R2019b/audio/ref/gtcc.html
https://www.mathworks.com/help/releases/R2019b/audio/ref/audiolabeler-app.html
https://www.mathworks.com/help/releases/R2019b/audio/ref/audiolabeler-app.html
https://www.mathworks.com/matlabcentral/fileexchange/65266-speech2text
https://www.mathworks.com/matlabcentral/fileexchange/65266-speech2text

Pink Noise: Generate noise signals common to audio applications
Use pinknoise to generate a single channel or multiple independent channels of pink noise that is
bounded between –1 and 1. The power spectral density of pink noise is inversely proportional to
frequency and falls off at 10 dB/decade (3 dB/octave). Pink noise is commonly used to test and
equalize loudspeakers and to mimic background noise encountered in real-world situations.

Tune reverberator parameters graphically
You can now tune parameters of the reverberator object graphically using parameterTuner.

Specify coefficient orientation output from designParamEQ,
designShelvingEQ, and designVarSlopeFilter
designParamEQ, designShelvingEQ, and designVarSlopeFilter now enable you to specify the
orientation of the returned filter coefficients. Specify the orientation as 'row' for interoperability
with FVTool, dsp.DynamicFilterVisualizer, and dsp.FourthOrderSectionFilter.

Visualize and analyze the filters designed by weightingFilter and
octaveFilter
The weightingFilter object and the octaveFilter object now include additional filter analysis
tools.

Additional examples for deep learning, active noise control, positional
audio, and time-frequency masking
• Keyword Spotting in Noise Using MFCC and LSTM Networks
• Sequential Feature Selection for Speech Emotion Recognition
• Active Noise Control: From Modeling to Real-Time Prototyping
• Binaural Audio Rendering Using Head Tracking
• Time-Frequency Masking for Harmonic-Percussive Source Separation

R2019b

4-4

https://www.mathworks.com/help/releases/R2019b/audio/ref/pinknoise.html
https://www.mathworks.com/help/releases/R2019b/audio/ref/reverberator-system-object.html
https://www.mathworks.com/help/releases/R2019b/audio/ref/parametertuner.html
https://www.mathworks.com/help/releases/R2019b/audio/ref/designparameq.html
https://www.mathworks.com/help/releases/R2019b/audio/ref/designshelvingeq.html
https://www.mathworks.com/help/releases/R2019b/audio/ref/designvarslopefilter.html
https://www.mathworks.com/help/releases/R2019b/signal/ref/fvtool.html
https://www.mathworks.com/help/releases/R2019b/dsp/ref/dsp.dynamicfiltervisualizer.html
https://www.mathworks.com/help/releases/R2019b/dsp/ref/dsp.fourthordersectionfilter.html
https://www.mathworks.com/help/releases/R2019b/audio/ref/weightingfilter-system-object.html
https://www.mathworks.com/help/releases/R2019b/audio/ref/octavefilter-system-object.html
https://www.mathworks.com/help/releases/R2019b/audio/examples/keyword-spotting-in-noise-using-mfcc-and-lstm-networks.html
https://www.mathworks.com/help/releases/R2019b/audio/examples/sequential-feature-selection-for-speech-emotion-recognition.html
https://www.mathworks.com/videos/active-noise-control-from-modeling-to-real-time-prototyping-1561451814853.html
https://www.mathworks.com/help/releases/R2019b/audio/examples/binaural-audio-rendering-using-head-tracking.html
https://www.mathworks.com/help/releases/R2019b/audio/examples/time-frequency-masking-for-harmonic-percussive-source-separation.html

R2019a

Version: 2.0

New Features

Compatibility Considerations

5

Modified Discrete Cosine Transform (MDCT)
Audio Toolbox enables you to transform to and from a compact frequency domain representation with
perfect reconstruction:

• mdct –– Transform a signal into a compact frequency-domain representation using the modified
discrete cosine transform (MDCT)

• imdct –– Transform a signal from a compact frequency-domain representation to the time domain
using the inverse MDCT.

• kbdwin –– Create a Kaiser-Bessel derived window. This window enables perfect reconstruction
when used with mdct and imdct.

Gammatone Filter Bank: Mimic the human auditory system
Use gammatoneFilterBank to decompose a signal by passing it through a bank of gammatone
filters equally spaced on the equivalent rectangular bandwidth (ERB) scale. Gammatone filter banks
are designed to model the human auditory system.

Mel-Spaced Spectrogram: Transform signals into perceptually-spaced
compact time-frequency representations
Use melSpectrogram to compute the mel spectrogram of an audio signal. Mel spectrograms are
popular features in deep-learning applications.

See Speech Command Recognition Using Deep Learning (Deep Learning Toolbox) and Acoustic Scene
Recognition Using Late Fusion for examples.

Feature Extraction: Gammatone cepstral coefficients (GTCC)
Use gtcc to extract gammatone cepstral coefficients from audio signals. You can specify the window
length and overlap length used for analysis, and optionally return the delta and delta-delta features
calculated with look-ahead. Gammatone cepstral coefficients are a biologically inspired modification
to mel frequency cepstral coefficients (mfcc), which have been shown to be robust to noise when
used in machine-learning applications.

See Classify Gender Using Long Short-Term Memory Networks for an example.

Feature Extraction: Characterize level of harmonicity in audio signals
Use harmonicRatio to describe how much of the total energy of a signal is harmonic.

Feature Extraction: Characterize spectral shape of audio signals
Audio Toolbox now includes a suite of features that describe spectral shape, or timbre:

• spectralCentroid
• spectralCrest
• spectralDecrease

R2019a

5-2

https://www.mathworks.com/help/releases/R2019a/audio/ref/mdct.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/imdct.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/kbdwin.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/gammatonefilterbank-system-object.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/melspectrogram.html
https://www.mathworks.com/help/releases/R2019a/deeplearning/examples/deep-learning-speech-recognition.html
https://www.mathworks.com/help/releases/R2019a/audio/examples/acoustic-scene-recognition-using-late-fusion.html
https://www.mathworks.com/help/releases/R2019a/audio/examples/acoustic-scene-recognition-using-late-fusion.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/gtcc.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/mfcc.html
https://www.mathworks.com/help/releases/R2019a/audio/examples/classify-gender-using-long-short-term-memory-networks.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/harmonicratio.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/spectralcentroid.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/spectralcrest.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/spectraldecrease.html

• spectralEntropy
• spectralFlatness
• spectralFlux
• spectralKurtosis
• spectralRolloffPoint
• spectralSkewness
• spectralSlope
• spectralSpread

See Spectral Descriptors for an overview of spectral descriptors and common applications.

Feature Extraction: Enhancements to cepstral feature extractors
cepstralFeatureExtractor and the Cepstral Feature Extractor block can now return gammatone
cepstral coefficients (GTCC). Use cepstralFeatureExtractor in MATLAB and the Cepstral
Feature Extractor block in Simulink when computing cepstral features for streaming audio.

Enhancements to Audio Datastore: Combine datastores and define
custom read functions
audioDatastore has been enhanced to include the following functions:

• transform –– Define a custom read function on a datastore
• combine –– Combine data from multiple audio datastores into a single datastore

Convert between Hz, Bark, ERB, and mel domains
Audio Toolbox now includes conversion functions between Hz and popular auditory scales: Bark,
equivalent rectangular bandwidth (ERB), and mel.

• erb2hz –– Convert from ERB scale to Hz
• hz2erb –– Convert from Hz to ERB scale
• bark2hz –– Convert from Bark scale to Hz
• hz2bark –– Convert from Hz to Bark scale
• mel2hz –– Convert from mel scale to Hz
• hz2mel –– Convert from Hz to mel scale

Generate JUCE projects from your audio plugins
generateAudioPlugin can now generate C/C++ source code and JUCE project files suitable for
use with JUCE 5.3.2. This functionality requires a MATLAB Coder license.

5-3

https://www.mathworks.com/help/releases/R2019a/audio/ref/spectralentropy.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/spectralflatness.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/spectralflux.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/spectralkurtosis.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/spectralrolloffpoint.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/spectralskewness.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/spectralslope.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/spectralspread.html
https://www.mathworks.com/help/releases/R2019a/audio/ug/spectral-descriptors.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/cepstralfeatureextractor-system-object.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/cepstralfeatureextractor.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/audiodatastore.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/audiodatastore.transform.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/audiodatastore.combine.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/erb2hz.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/hz2erb.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/bark2hz.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/hz2bark.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/mel2hz.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/hz2mel.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/generateaudioplugin.html

Octave Filter Bank: Decompose signal into octave or fractional-octave
subbands
Use octaveFilterBank to decompose signals into octave or fractional-octave subbands.

Graphically tune audio plugins and Audio Toolbox objects while
streaming
Use parameterTuner to graphically tune parameters of audio plugins while streaming.
parameterTuner is compatible with classes that inherit from audioPlugin and define tunable
parameters.

You can also tune parameters of Audio Toolbox objects, including:

• compressor
• expander
• limiter
• noiseGate
• octaveFilter
• crossoverFilter
• multibandParametricEQ
• graphicEQ
• audioOscillator
• wavetableSynthesizer

Enhanced Parametric Equalization in Simulink
The Parametric EQ Filter block has been renamed as Parametric EQ and enhanced to use the
designParamEQ algorithm. Instances of the Parametric EQ Filter block in existing models will not be
automatically updated.

Improved Swept Sine Generation and Impulse Response Estimation
sweeptone and impzest have been improved to calculate more accurate impulse response
estimations. The output of the sweeptone function has changed. impzest can be used with
recordings using sweeptone from early releases as long as the corresponding excitation is specified
to impzest.

New examples for deep learning, active noise control, pitch tracking,
and MIDI
Examples for machine learning and deep learning:

• Cocktail Party Source Separation Using Deep Learning Networks
• Voice Activity Detection in Noise Using Deep Learning
• Acoustic Scene Recognition Using Late Fusion

R2019a

5-4

https://www.mathworks.com/help/releases/R2019a/audio/ref/octavefilterbank-system-object.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/parametertuner.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/audioplugin-class.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/compressor-system-object.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/expander-system-object.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/limiter-system-object.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/noisegate-system-object.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/octavefilter-system-object.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/crossoverfilter-system-object.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/multibandparametriceq-system-object.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/graphiceq-system-object.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/audiooscillator-system-object.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/wavetablesynthesizer-system-object.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/parametriceq.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/designparameq.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/sweeptone.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/impzest.html
https://www.mathworks.com/help/releases/R2019a/audio/examples/cocktail-party-source-separation-using-deep-learning-networks.html
https://www.mathworks.com/help/releases/R2019a/audio/examples/voice-activity-detection-in-noise-using-deep-learning.html
https://www.mathworks.com/help/releases/R2019a/audio/examples/acoustic-scene-recognition-using-late-fusion.html

• Spoken Digit Recognition with Wavelet Scattering and Deep Learning

Examples for active noise control:

• Active Noise Control with Simulink Real-Time

Example for pitch tracking:

• Pitch Tracking Using Multiple Pitch Estimations and HMM

Example for MIDI:

• Convert MIDI Files into MIDI Messages

5-5

https://www.mathworks.com/help/releases/R2019a/audio/examples/spoken-digit-recognition-with-wavelet-scattering-and-deep-learning.html
https://www.mathworks.com/help/releases/R2019a/audio/examples/active-noise-control-with-simulink.html
https://www.mathworks.com/help/releases/R2019a/audio/examples/pitch-tracking-using-multiple-pitch-estimations-and-hmm.html
https://www.mathworks.com/help/releases/R2019a/audio/examples/convert-midi-files-into-midi-messages.html

R2018b

Version: 1.5

New Features

6

Audio Labeler App: Interactively define and visualize ground-truth
labels for audio datasets
Use the Audio Labeler app for interactive audio labeling. The Audio Labeler app enables you to:

• Visualize the time-domain waveform during playback.
• Assign labels at the file level and region level.
• Create label definitions for consistent and fast labeling.
• Record audio.

Audio Datastore: Handle large collections of audio recordings for
batch processing or machine and deep learning applications
Use audioDatastore to handle large collections of audio signals and associated labels that are too
large to fit in memory. With audio datastores, you can:

• Point to a collection of audio files in a specified location.
• Associate labels with audio files.
• Split datastores according to label definitions and specified proportions.
• Randomize the order of audio files.
• Read files consecutively while monitoring progress.
• Process audio files in parallel when using a machine with multiple cores (requires Parallel

Computing Toolbox).

Octave Level Metering: Measure sound pressure level for octave and
fractional-octave bands of audio signals
The splMeter System object™ now enables you to measure the sound pressure level (SPL) of octave
and fractional-octave bands.

HRTF Interpolation: Compute Head-Related Transfer Functions (HRTF)
for arbitrary positions from space-discrete datasets
Use interpolateHRTF to interpolate between HRTFs that were measured at known positions.

Impulse Response Measurements: Estimate impulse responses of
acoustical systems using MATLAB code
Use impzest to estimate the impulse response of an audio system given a known excitation signal
and a recorded signal. The impzest function supports the maximum length sequence (MLS)
technique and the exponential sine sweep (ESS) technique for impulse response estimation. Use mls
and sweeptone to generate the excitation signals.

Audio Test Bench enhancements
The Audio Test Bench is a graphical debugging and testing suite for audio processing modules.

R2018b

6-2

https://www.mathworks.com/help/releases/R2018b/audio/ref/audiolabeler-app.html
https://www.mathworks.com/help/releases/R2018b/audio/ref/audiodatastore.html
https://www.mathworks.com/help/releases/R2018b/audio/ref/splmeter-system-object.html
https://www.mathworks.com/help/releases/R2018b/audio/ref/interpolatehrtf.html
https://www.mathworks.com/help/releases/R2018b/audio/ref/impzest.html
https://www.mathworks.com/help/releases/R2018b/audio/ref/mls.html
https://www.mathworks.com/help/releases/R2018b/audio/ref/sweeptone.html
https://www.mathworks.com/help/releases/R2018b/audio/ref/audiotestbench-app.html

With the Audio Test Bench, you now can:

• Open custom visualizations for audio plugins.
• Use the visualization and tuning capabilities of the Audio Test Bench without writing audio to a

device or file.

Additional examples for machine learning, deep learning, and spatial
audio
Examples for machine learning and deep learning:

• Classify Gender Using Long Short-Term Memory Networks –– Use MFCC, pitch, harmonicity, and
spectral centroid with a multilayer LSTM network to classify speaker gender.

• Denoise Speech Using Deep Learning Networks –– Use a spectrogram transformation and a deep
CNN network to solve an audio regression problem.

• Music Genre Classification Using Wavelet Time Scattering –– Use wavelet time scattering and the
audio datastore to classify music by genre.

Examples for spatial audio:

• Ambisonic Binaural Decoding –– Decode ambisonic audio into binaural audio using virtual
loudspeakers.

• Ambisonic Plugin Generation –– Create ambisonic plugins using higher order ambisonic (HOA)
demo functions.

6-3

https://www.mathworks.com/help/releases/R2018b/audio/examples/classify-gender-using-long-short-term-memory-networks.html
https://www.mathworks.com/help/releases/R2018b/audio/examples/denoise-speech-using-deep-learning-networks.html
https://www.mathworks.com/help/releases/R2018b/audio/examples/music-genre-classification-using-wavelet-time-scattering.html
https://www.mathworks.com/help/releases/R2018b/audio/examples/ambisonic-binaural-decoding.html
https://www.mathworks.com/help/releases/R2018b/audio/examples/ambisonic-plugin-generation.html

R2018a

Version: 1.4

New Features

7

Impulse Response Measurer App: Interactively measure impulse and
frequency responses of acoustic systems
The Impulse Response Measurer app enables you to acquire, analyze, and export impulse response
and frequency response measurements through a user interface.

MIDI Message Interface: Send and receive MIDI messages of any type
in MATLAB
You can now send and receive MIDI messages using the following features:

• mididevice –– Interface to a MIDI device in MATLAB. mididevice acts as a conduit between
the MATLAB environment and your real-world MIDI device.

• midimsg –– Create a MIDI message in MATLAB
• midisend –– Send a MIDI message to an external MIDI device
• midireceive –– Receive a MIDI message from an external MIDI device

See MIDI Device Interface for a walkthrough of sending and receiving MIDI messages in MATLAB.

Voice Activity Detection: Automate the detection of speech content in
audio signals
The voiceActivityDetector System object returns a confidence metric indicating the presence of
speech in streaming audio signals. The input to the object can be time-domain or frequency-domain
signals.

In the Simulink environment, use the Voice Activity Detector block.

Feature Extraction: Compute features of audio signals, such as pitch
and MFCC
Detect the fundamental frequency of audio signals using the pitch function. You can choose between
pitch detection algorithms, including the pitch estimation filter, normalized correlation function,
cepstrum, log-harmonic summation, and summation of residual harmonics.

The Audio Toolbox enables batch and streaming approaches to cepstral feature extraction:

• cepstralFeatureExtractor –– Use the cepstralFeatureExtractor System object to
process frame-based audio signals. You can specify your input in the time or frequency domain.
This feature enables you to fine-tune the extracted features using the BandEdges,
FilterBankNormalization, and FilterBankDesignDomain properties.

In the Simulink environment, use the Cepstral Feature Extractor block.
• mfcc –– Use the mfcc function to process whole audio signals. You can specify the window length

and overlap length used for analysis, and optionally return the delta and delta-delta features
calculated with look-ahead.

R2018a

7-2

https://www.mathworks.com/help/releases/R2018a/audio/ref/impulseresponsemeasurer-app.html
https://www.mathworks.com/help/releases/R2018a/audio/ref/mididevice.html
https://www.mathworks.com/help/releases/R2018a/audio/ref/midimsg.html
https://www.mathworks.com/help/releases/R2018a/audio/ref/mididevice.midisend.html
https://www.mathworks.com/help/releases/R2018a/audio/ref/mididevice.midireceive.html
https://www.mathworks.com/help/releases/R2018a/audio/ug/midi-device-interface.html
https://www.mathworks.com/help/releases/R2018a/audio/ref/voiceactivitydetector-system-object.html
https://www.mathworks.com/help/releases/R2018a/audio/ref/voiceactivitydetector.html
https://www.mathworks.com/help/releases/R2018a/audio/ref/pitch.html
https://www.mathworks.com/help/releases/R2018a/audio/ref/cepstralfeatureextractor-system-object.html
https://www.mathworks.com/help/releases/R2018a/audio/ref/cepstralfeatureextractor.html
https://www.mathworks.com/help/releases/R2018a/audio/ref/mfcc.html

Sound Pressure Level (SPL) Metering: Measure the level of acoustic
signals in decibels relative to a standard perceptual reference
Use the splMeter System object to compute fast or slow, A-weighted or C-weighted, equivalent
continuous, peak, and maximum sound pressure level measurements. You can calibrate your
splMeter for your hardware and environment using the CalibrationFactor and TimeInterval
properties. You can calculate your CalibrationFactor according to standards using the
calibrate method.

Improved Audio Test Bench: Persistent I/O Settings and Bypass Mode
The Audio Test Bench is a graphical debugging and testing suite for audio processing modules.

New abilities of the Audio Test Bench include:

• Persistent input and output settings across sessions.
• A/B test your algorithm by bypassing the object under test.
• Visualize, analyze, and play unprocessed audio by not specifying an object under test.

Multichannel Support for RaspberryPi and STM Discovery Hardware
New multi-channel support for Mic In, Line In, and Speaker Out blocks for hardware support
packages. See the hardware package release notes for more details:

• Release Notes for Embedded Coder Support Package for STMicroelectronics Discovery Boards
(Embedded Coder Support Package for STMicroelectronics Discovery Boards)

• Release Notes for Simulink Support Package for Raspberry Pi Hardware (Simulink Support
Package for Raspberry Pi Hardware)

Additional examples for word recognition and dataset recording
New examples include:

• Deep Learning Speech Recognition

Use an auditory-based spectrogram to train a speaker-independent small vocabulary isolated word
recognition system. Use audioexample.Datastore to manage large datasets. After training,
you can run a streaming version for real-time word recognition. This example requires the Neural
Network Toolbox™.

• Record Audio Datasets

Record and label audio datasets using a user interface.

Speech-to-Text Transcription Using 3rd-Party Speech API
To perform speech-to-text transcription in MATLAB, use the speech2text function available on File
Exchange. The function enables you to interface third-party speech-to-text APIs, including:

• Google Speech API

7-3

https://www.mathworks.com/help/releases/R2018a/audio/ref/splmeter-system-object.html
https://www.mathworks.com/help/releases/R2018a/audio/ref/audiotestbench-app.html
https://www.mathworks.com/help/supportpkg/stmicroelectronicsstm32f4discovery/release-notes.html
https://www.mathworks.com/help/supportpkg/raspberrypi/release-notes.html
https://www.mathworks.com/help/releases/R2018a/nnet/examples/deep-learning-speech-recognition.html
https://www.mathworks.com/help/releases/R2018a/audio/examples/record-audio-datasets.html
https://www.mathworks.com/matlabcentral/fileexchange/65266-speech2text

• IBM Watson Speech API
• Microsoft Azure Speech API

The File Exchange submission includes a tutorial to help get you started.

R2018a

7-4

https://www.mathworks.com/matlabcentral/fileexchange/65266-speech2text

R2017b

Version: 1.3

New Features

8

AU Plugin Hosting: Run and test Audio Units (AU) plugins in MATLAB
on macOS
You can now load Audio Units (AU) plugins into MATLAB using the loadAudioPlugin function. You
can interact with the hosted plugin graphically using the Audio Test Bench.

Graphic Equalization: Boost and cut standard octave or fractional
octave frequency bands in MATLAB and Simulink
You can use the graphicEQ System object to perform equalization. The graphic equalizer uses the
ANSI S1.11-2004 and ISO 266:1997(E) standards to determine and label the center frequencies of
individual bandpass filters.

In the Simulink environment, use the Graphic EQ block.

Real-World Parameter Values for Hosted Plugins: Set and get values
of hosted plugin parameters directly, using standard dot notation
Plugins loaded into the MATLAB environment using loadAudioPlugin are now populated with
properties with real-world values. You can interact with the properties directly using standard dot
notation.

See Host External Audio Plugins for a description of how normalized parameter values are
heuristically interpreted as real-world values.

VST and AU plugins continue to support interaction through normalized parameter values.

MATLAB Code Generation from Audio Test Bench: Automatically
generate MATLAB code for real-time audio streaming and processing
You can now generate MATLAB code from the Audio Test Bench. The generated MATLAB code is
the script implementation of your Audio Test Bench. Settings in the Audio Test Bench, such as
plugin parameter values and scopes opened through the test bench, are also ported to the MATLAB
code.

Direct Access to ASIO Configuration Panel: Open configuration panel
of ASIO drivers directly from MATLAB
You can now open an ASIO settings user interface directly from MATLAB using the asiosettings
function.

Additional input ports for Audio Toolbox blocks
The table describes the new optional input ports for tuning your block parameters.

R2017b

8-2

https://www.mathworks.com/help/releases/R2017b/audio/ref/loadaudioplugin.html
https://www.mathworks.com/help/releases/R2017a/audio/ref/audiotestbench-app.html
https://www.mathworks.com/help/releases/R2017b/audio/ref/graphiceq-system-object.html
https://www.mathworks.com/help/releases/R2017b/audio/ref/graphiceq.html
https://www.mathworks.com/help/releases/R2017b/audio/ref/loadaudioplugin.html
https://www.mathworks.com/help/releases/R2017b/audio/gs/host-external-audio-plugins.html
https://www.mathworks.com/help/releases/R2017b/audio/ref/audiotestbench-app.html
https://www.mathworks.com/help/releases/R2017b/audio/ref/asiosettings.html

Block Parameters Tuned by New Optional Input
Ports

Compressor Threshold (dB), Ratio, Knee width (dB),
Attack time (s), Release time (s)

Expander Threshold (dB), Ratio, Knee width (dB),
Attack time (s), Release time (s), Hold time
(s)

Limiter Threshold (dB), Knee width (dB), Attack time
(s), Release time (s), Hold time (s)

Noise Gate Threshold (dB), Attack time (s), Release time
(s), Hold time (s)

Octave Filter Center frequency (Hz)

Additional examples for machine learning, spatial audio, device
measurements, and deployment to android
New examples include:

• Speaker Identification Using Pitch and MFCC
• Acoustic Beamforming Using a Microphone Array
• Measure Frequency Response of an Audio Device
• Parametric Audio Equalizer for Android Devices

Enhancements to existing examples include:

• Measure Impulse Response of an Audio System
• Measure Audio Latency

8-3

https://www.mathworks.com/help/releases/R2017b/audio/ref/compressor.html
https://www.mathworks.com/help/releases/R2017b/audio/ref/expander.html
https://www.mathworks.com/help/releases/R2017b/audio/ref/limiter.html
https://www.mathworks.com/help/releases/R2017b/audio/ref/noisegate.html
https://www.mathworks.com/help/releases/R2017b/audio/ref/octavefilter.html
https://www.mathworks.com/help/releases/R2017b/audio/examples/speaker-identification-using-pitch-and-mfcc.html
https://www.mathworks.com/help/releases/R2017b/audio/examples/acoustic-beamforming-using-a-microphone-array.html
https://www.mathworks.com/help/releases/R2017b/audio/examples/measure-frequency-response-of-an-audio-device.html
https://www.mathworks.com/help/releases/R2017b/audio/examples/parametric-audio-equalizer-for-android-devices.html
https://www.mathworks.com/help/releases/R2017b/audio/examples/measure-impulse-response-of-an-audio-system.html
https://www.mathworks.com/help/releases/R2017b/audio/examples/measure-audio-latency.html

R2017a

Version: 1.2

New Features

9

Enhanced VST Workflow in Audio Test Bench: Interactively tune
hosted VST plugins and test MATLAB objects in VST mode
The Audio Test Bench is a graphical debugging and testing suite for audio processing modules.

New abilities of the Audio Test Bench include:

• Host external VST and VST3 plugins. You can now interact with external plugins using the
graphical UI of the Audio Test Bench, as you would in a DAW.

• Run audio plugins created in MATLAB as VST plugins.

Synchronized Playback and Acquisition: Play back and acquire audio
signals synchronously in MATLAB via a single audioPlayerRecorder
object
The audioPlayerRecorder System object reads and writes from an audio device simultaneously,
enabling real-time system measurements when using ASIO, Core Audio, or ALSA drivers. Combining
the play and record into a single object enables easy configuration and consistent latency between
input and output.

WASAPI Driver Support on Windows: Stream signals from and to audio
devices equipped with WASAPI drivers
The audioDeviceWriter and audioDeviceReader System objects and the Audio Device Reader
and Audio Device Writer blocks now support WASAPI drivers on Windows machines.

File browsing in Audio Test Bench
You can now browse for audio input files and the object under test directly from the Audio Test
Bench.

Additional fractional bandwidth option for octave filtering
The octaveFilter System object and Octave Filter block now support 2/3 octave bandwidth. This
octave bandwidth is popular in graphic equalizer designs.

configureMIDI support for hosted audio plugins
You can now use the configureMIDI function to quickly synchronize your hosted audio plugins with
MIDI devices.

Tab completion for parameter names and options
You can now use tab completion to complete parameter names and options for all System objects in
Audio Toolbox. Tab completions also work for the validateAudioPlugin, loadAudioPlugin, and
generateAudioPlugin functions.

R2017a

9-2

https://www.mathworks.com/help/releases/R2017a/audio/ref/audiotestbench-app.html
https://www.mathworks.com/help/releases/R2017a/audio/ref/audioplayerrecorder-class.html
https://www.mathworks.com/help/releases/R2017a/audio/ref/audiodevicewriter-class.html
https://www.mathworks.com/help/releases/R2017a/audio/ref/audiodevicereader-class.html
https://www.mathworks.com/help/releases/R2017a/audio/ref/audiodevicereader.html
https://www.mathworks.com/help/releases/R2017a/audio/ref/audiodevicewriter.html
https://www.mathworks.com/help/releases/R2017a/audio/ref/audiotestbench-app.html
https://www.mathworks.com/help/releases/R2017a/audio/ref/audiotestbench-app.html
https://www.mathworks.com/help/releases/R2017a/audio/ref/octavefilter-class.html
https://www.mathworks.com/help/releases/R2017a/audio/ref/octavefilter.html
https://www.mathworks.com/help/releases/R2017a/audio/ref/configuremidi.html

Additional audio plugin examples
The Audio Plugin Gallery contains audio plugin example code that can be used as building blocks in
larger systems, as models for design patterns, or as benchmarks for comparison.

New plugins in the gallery include:

• audiopluginexample.FastConvolver
• audiopluginexample.Phaser
• audiopluginexample.MultiNotchFilter
• audiopluginexample.SpeechPitchDetector
• audiopluginexample.BeatDetector

Enhancements to existing plugins in the gallery include:

• The audiopluginexample.SpectralSubtractor example now includes an analysis and
synthesis buffering object. The
audiopluginexample.private.AnalysisAndSynthesisBuffer object enables easy input/
output buffering for the audio plugin API so that you can concentrate on your algorithm.

9-3

https://www.mathworks.com/help/releases/R2017a/audio/ug/audio-plug-in-example-resources.html

R2016b

Version: 1.1

New Features

10

Audio Plugin Hosting: Run and test VST plugins directly in MATLAB
The loadAudioPlugin function enables you to host external VST and VST3 plugins in MATLAB. You
can process audio using the algorithm of the hosted plugin. You can interact with the hosted plugin
programmatically by getting and setting parameters.

Improved Audio Test Bench: Choose from a wider range of input
signals, and generate VST plugins directly from the app
The Audio Test Bench is a graphical debugging and testing suite for audio processing modules.

New abilities of the Audio Test Bench include:

• Switch the object under test in a single instance of the test bench.
• New input choices: wavetableSynthesizer, audioOscillator, dsp.Chirp, and

dsp.ColoredNoise.
• Validate and generate VST plugins directly from the test bench.
• Track overrun and underrun in frames, seconds, or samples.

Loudness Metering: Measure standard-compliant loudness
parameters
Measure integrated loudness and loudness range of an audio signal using the integratedLoudness
function.

Measure momentary loudness, short-term loudness, integrated loudness, loudness range, and true-
peak of streaming audio using the loudnessMeter System object. You can also open an 'EBU-Mode'
visualization for loudness metering.

Measure momentary loudness, short-term loudness, and true-peak in the Simulink environment using
the Loudness Meter block.

Octave-Band Filters: Select octave and fractional-octave signal bands
using standard-compliant digital filters
Perform octave-band and fractional octave-band filtering for arbitrary center frequency using the
octaveFilter System object. With this object, you can tune center frequency and bandwidth while
the simulation is running. To check your compliance to the ANSI S1.11-2004 standard, use the
isStandardCompliant method. To visualize and validate your filter response, use the visualize
method.

In the Simulink environment, use the Octave Filter block.

Audio Weighting Filters: Compensate signal magnitude for perceptual
measurements using standard-compliant A-, C-, and K-weighted filters
Perform frequency-weighted filtering using the weightingFilter System object. With this object,
you can design A-weighted and C-weighted filters based on the ANSI S1.42-2001 standard, or K-
weighted filters based on the ITU-R BS.1770-4 standard. To check your compliance to the IEC

R2016b

10-2

https://www.mathworks.com/help/releases/R2016b/audio/ref/loadaudioplugin.html
https://www.mathworks.com/help/releases/R2016b/audio/ref/audiotestbench-app.html
https://www.mathworks.com/help/releases/R2016b/audio/ref/wavetablesynthesizer-class.html
https://www.mathworks.com/help/releases/R2016b/audio/ref/audiooscillator-class.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.chirp-class.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.colorednoise-class.html
https://www.mathworks.com/help/releases/R2016b/audio/ref/integratedloudness.html
https://www.mathworks.com/help/releases/R2016b/audio/ref/loudnessmeter-class.html
https://www.mathworks.com/help/releases/R2016b/audio/ref/loudnessmeter.html
https://www.mathworks.com/help/releases/R2016b/audio/ref/octavefilter-class.html
https://www.mathworks.com/help/releases/R2016b/audio/ref/octavefilter.html
https://www.mathworks.com/help/releases/R2016b/audio/ref/weightingfilter-class.html

61672-1:2002 standard, use the isStandardCompliant method. To visualize and validate your filter
response, use the visualize method.

In the Simulink environment, use the Weighting Filter block.

Plugin class creation and MIDI support for multiband parametric
equalizer
New functionality for the multibandParametricEQ System object includes:

• Plugin class creation using createAudioPluginClass
• MIDI support using configureMIDI

multibandParametricEQ is now enabled for the Audio Test Bench.

Simpler way to call System objects
Instead of using the step method to perform the operation defined by a System object, you can call
the object with arguments, as if it were a function. The step method will continue to work. This
feature improves the readability of scripts and functions that use many different System objects.

For example, if you create a weightingFilter System object named Cweight, then you call the
System object as a function with that name.

Cweight = weightingFilter('C-weighting');
Cweight(x)

The equivalent operation using the step method is:

Cweight = weightingFilter('C-weighting');
step(Cweight,x)

When the step method has the System object as its only argument, the function equivalent has no
arguments. This function must be called with empty parentheses. For example, step(sysobj) and
sysobj() perform equivalent operations.

10-3

https://www.mathworks.com/help/releases/R2016b/audio/ref/weightingfilter.html
https://www.mathworks.com/help/releases/R2016b/audio/ref/multibandparametriceq-class.html

R2016a

Version: 1.0

New Features

11

VST plugin generation for digital audio workstations
Audio Toolbox enables the design and generation of VST plugins.

For more information, see Export a MATLAB Plugin to a DAW.

Interfaces to ASIO, ALSA, CoreAudio, and Windows Direct Sound
Audio Toolbox enables real-time audio processing using low-latency audio drivers.

For more information, see Audio I/O: Buffering, Latency, and Throughput.

Interfaces to MIDI controls for real-time tuning of MATLAB and
Simulink simulations
Audio Toolbox enables real-time tuning in MATLAB and Simulink using MIDI controls.

For more information, see configureMIDI and Musical Instrument Digital Interface (MIDI).

Audio processing algorithms, sources, and measurements for MATLAB
and Simulink
Audio Toolbox provides algorithms and tools for the design, simulation, and desktop prototyping of
audio processing systems.

For more information, see Audio Processing Algorithm Design.

Audio test bench to automatically generate an interactive audio
simulation environment
Audio Toolbox provides an all-in-one graphical debugging and testing suite.

For more information, see Audio Test Bench and Use the Audio Test Bench.

Support for C code generation
You can use MATLAB Coder to generate efficient C and C++ code for most Audio Toolbox functions,
classes, and System objects.

For a list of supported functions and objects, see Audio System Toolbox.

For a guide to developing code capable of C code generation, see MATLAB Programming for Code
Generation.

Support for MATLAB Compiler
You can use MATLAB Compiler™ to share MATLAB programs as standalone applications.

For an example, see Deploy Audio Applications with MATLAB Compiler.

R2016a

11-2

https://www.mathworks.com/help/releases/R2016a/audio/gs/export-matlab-plugin-to-a-daw.html
https://www.mathworks.com/help/releases/R2016a/audio/gs/audio-io-buffering-latency-and-throughput.html
https://www.mathworks.com/help/releases/R2016a/audio/ref/configuremidi.html
https://www.mathworks.com/help/releases/R2016a/audio/ug/musical-instrument-digital-interface.html
https://www.mathworks.com/help/releases/R2016a/audio/audio-processing-algorithm-design.html
https://www.mathworks.com/help/releases/R2016a/audio/ref/audiotestbench-app.html
https://www.mathworks.com/help/releases/R2016a/audio/ug/using-the-audio-test-bench.html
https://www.mathworks.com/help/releases/R2016a/coder/ug/functions-supported-for-code-generation--categorical-list.html#bu7z81n
https://www.mathworks.com/help/releases/R2016a/coder/matlab-algorithm-design.html
https://www.mathworks.com/help/releases/R2016a/coder/matlab-algorithm-design.html
https://www.mathworks.com/help/releases/R2016a/audio/examples/deploy-audio-applications-with-matlab-compiler.html

	R2021a
	OpenL3 Pretrained Network: Extract deep audio embeddings with pretrained OpenL3 convolutional neural network
	CREPE: Deep learning pitch estimation
	ivectorSystem: Produce compact representations of audio signals
	vggishPreprocess and yamnetPreprocess
	Enhanced audio workflow within Signal Labeler
	acousticRoughness: Measure perceived roughness of an acoustic signal
	Octave Filter Bank Block: Octave and fractional-octave filter bank
	Sidechain input capability for dynamic range objects and blocks
	GPU code acceleration for audioFeatureExtractor object
	New rectification option for cepstralCoefficients
	Extended JUCE project support
	Set nondefault time stretching and pitch shifting parameters using audioDataAugmenter
	Additional examples for deep learning and psychoacoustics

	R2020b
	YAMNet Pretrained Network: Classify sounds with pretrained YAMNet neural network
	VGGish Pretrained Network: Extract audio embeddings with pretrained VGGish neural network
	Extract cepstral coefficients from spectrograms and auditory spectrograms
	Compute delta of audio features
	Enhanced control of designAuditoryFilterBank
	Enhanced control of audioFeatureExtractor and Extract Audio Features
	Enhanced control of melSpectrogram
	Enhanced control of time-domain windowing for mfcc and gtcc
	Extract spectral flux from streaming signals
	Generate MATLAB function from audioFeatureExtractor
	GPU code acceleration for new and existing features
	GPU code generation support for the melSpectrogram function
	Measure perceived acoustic fluctuation strength
	Enhanced control over sound pressure level (SPL) metering
	Improved low-frequency and high-frequency octave filtering using octaveFilter
	Improved low-frequency octave filtering using octaveFilterBank
	Enhanced Audio Test Bench workflow
	Report audio plugin latency to host
	Refresh audio device list from audio I/O blocks
	Additional examples for deep learning
	Functionality being removed or changed
	Specify window for mfcc, gtcc, and melSpectrogram functions
	Delta computation for mfcc, gtcc, and audioFeatureExtractor
	Window normalization parameter renamed for audioFeatureExtractor
	SOS returned instead of FOS from octaveFilterBank
	cepstralFeatureExtractor will be removed
	designAuditoryFilterBank scaling changed for ERB filter banks

	R2020a
	Measure perceived loudness according to ISO 532-1 or ISO 532-2
	Measure perceived sharpness according to DIN 45692
	Determine calibration factor for microphone
	Convert between acoustic loudness units phon and sone
	Detect boundaries of speech in audio
	Streamline audio feature extraction in the Live Editor
	GPU code generation support for the mfcc function
	Audio Datastore: Write data from audio datastore using writeall
	GPU code acceleration for mfcc and melSpectrogram functions
	Text-to-speech conversion using third-party speech API
	Cubic root rectification for MFCC and GTCC calculations
	Enhanced look and feel for Audio Test Bench
	Enhanced visualization for loaded plugins
	Generate standalone executable from audio plugin
	Generate sine, square, and sawtooth waveforms in Simulink
	Generate periodic signal from single-cycle waveforms in Simulink
	Additional input ports for Audio Toolbox blocks
	Additional examples for deep learning and machine learning

	R2019b
	AU Plugin Generation: Generate AU plugins for macOS
	Custom Plugin UI: Generate VST and AU plugins with custom UIs
	Enhanced Parameter Tuner UI
	Audio Data Augmentation: Enlarge your dataset using audio-specific augmentation
	Audio Feature Extraction: Streamline audio feature extraction
	Pitch shifting: Increase or decrease the pitch of audio signals
	Time stretching: Stretch the time scale of audio signals
	Auditory Filter Banks: Design common frequency-domain auditory filter banks
	Enhanced MFCC extraction
	Enhanced GTCC extraction
	Audio Labeler App: Automatically label regions of speech
	Audio Labeler App: Speech-to-text transcription using third-party speech API
	Pink Noise: Generate noise signals common to audio applications
	Tune reverberator parameters graphically
	Specify coefficient orientation output from designParamEQ, designShelvingEQ, and designVarSlopeFilter
	Visualize and analyze the filters designed by weightingFilter and octaveFilter
	Additional examples for deep learning, active noise control, positional audio, and time-frequency masking

	R2019a
	Modified Discrete Cosine Transform (MDCT)
	Gammatone Filter Bank: Mimic the human auditory system
	Mel-Spaced Spectrogram: Transform signals into perceptually-spaced compact time-frequency representations
	Feature Extraction: Gammatone cepstral coefficients (GTCC)
	Feature Extraction: Characterize level of harmonicity in audio signals
	Feature Extraction: Characterize spectral shape of audio signals
	Feature Extraction: Enhancements to cepstral feature extractors
	Enhancements to Audio Datastore: Combine datastores and define custom read functions
	Convert between Hz, Bark, ERB, and mel domains
	Generate JUCE projects from your audio plugins
	Octave Filter Bank: Decompose signal into octave or fractional-octave subbands
	Graphically tune audio plugins and Audio Toolbox objects while streaming
	Enhanced Parametric Equalization in Simulink
	Improved Swept Sine Generation and Impulse Response Estimation
	New examples for deep learning, active noise control, pitch tracking, and MIDI

	R2018b
	Audio Labeler App: Interactively define and visualize ground-truth labels for audio datasets
	Audio Datastore: Handle large collections of audio recordings for batch processing or machine and deep learning applications
	Octave Level Metering: Measure sound pressure level for octave and fractional-octave bands of audio signals
	HRTF Interpolation: Compute Head-Related Transfer Functions (HRTF) for arbitrary positions from space-discrete datasets
	Impulse Response Measurements: Estimate impulse responses of acoustical systems using MATLAB code
	Audio Test Bench enhancements
	Additional examples for machine learning, deep learning, and spatial audio

	R2018a
	Impulse Response Measurer App: Interactively measure impulse and frequency responses of acoustic systems
	MIDI Message Interface: Send and receive MIDI messages of any type in MATLAB
	Voice Activity Detection: Automate the detection of speech content in audio signals
	Feature Extraction: Compute features of audio signals, such as pitch and MFCC
	Sound Pressure Level (SPL) Metering: Measure the level of acoustic signals in decibels relative to a standard perceptual reference
	Improved Audio Test Bench: Persistent I/O Settings and Bypass Mode
	Multichannel Support for RaspberryPi and STM Discovery Hardware
	Additional examples for word recognition and dataset recording
	Speech-to-Text Transcription Using 3rd-Party Speech API

	R2017b
	AU Plugin Hosting: Run and test Audio Units (AU) plugins in MATLAB on macOS
	Graphic Equalization: Boost and cut standard octave or fractional octave frequency bands in MATLAB and Simulink
	Real-World Parameter Values for Hosted Plugins: Set and get values of hosted plugin parameters directly, using standard dot notation
	MATLAB Code Generation from Audio Test Bench: Automatically generate MATLAB code for real-time audio streaming and processing
	Direct Access to ASIO Configuration Panel: Open configuration panel of ASIO drivers directly from MATLAB
	Additional input ports for Audio Toolbox blocks
	Additional examples for machine learning, spatial audio, device measurements, and deployment to android

	R2017a
	Enhanced VST Workflow in Audio Test Bench: Interactively tune hosted VST plugins and test MATLAB objects in VST mode
	Synchronized Playback and Acquisition: Play back and acquire audio signals synchronously in MATLAB via a single audioPlayerRecorder object
	WASAPI Driver Support on Windows: Stream signals from and to audio devices equipped with WASAPI drivers
	File browsing in Audio Test Bench
	Additional fractional bandwidth option for octave filtering
	configureMIDI support for hosted audio plugins
	Tab completion for parameter names and options
	Additional audio plugin examples

	R2016b
	Audio Plugin Hosting: Run and test VST plugins directly in MATLAB
	Improved Audio Test Bench: Choose from a wider range of input signals, and generate VST plugins directly from the app
	Loudness Metering: Measure standard-compliant loudness parameters
	Octave-Band Filters: Select octave and fractional-octave signal bands using standard-compliant digital filters
	Audio Weighting Filters: Compensate signal magnitude for perceptual measurements using standard-compliant A-, C-, and K-weighted filters
	Plugin class creation and MIDI support for multiband parametric equalizer
	Simpler way to call System objects

	R2016a
	VST plugin generation for digital audio workstations
	Interfaces to ASIO, ALSA, CoreAudio, and Windows Direct Sound
	Interfaces to MIDI controls for real-time tuning of MATLAB and Simulink simulations
	Audio processing algorithms, sources, and measurements for MATLAB and Simulink
	Audio test bench to automatically generate an interactive audio simulation environment
	Support for C code generation
	Support for MATLAB Compiler

